Moving towards full integration of Process Analysers using NESSI Modular Systems

Neil BRETON
Agenda

- About SOLVAY
- Past experience using Nessi modular systems in SOLVAY
- Installing Tunable Diode Lasers (TDL) on Nessi/ASTUTE modular systems in the PVC industry
- Installing Chlorine moisture sensors on full plastic Nessi/ASTUTE modular systems
- Future Perspectives & Conclusions
About SOLVAY – Who we are

- **SOLVAY** is an **international industrial Group active in Chemistry**. It acquired **RHODIA** in September 2011 and now counts over 29 000 employees worldwide.

- It offers a broad range of products and solutions that contribute to improving quality of life.

- A strong commitment to **sustainable development** with a clear focus on **innovation & operational excellence**.

- Two main sectors of activity: **Chemicals** and **Plastics**.
About SOLVAY – Who we are

90% of Sales among the TOP 3

- **#1 Specialty Polymers**
 - High Barrier Polymers, High-Performance Engineering Polymers & Compounds, Fluorinated Polymers

- **#2 Polyamide & Intermediates**
 - PA 6.6 Polymers, Intermediates & Engineering Plastics

- **#1 Essential Chemicals**
 - Hydrogen Peroxide, Soda Ash & Sodium Bicarbonate

- **#1 Silica & Rare Earth Systems**
 - High-Performance Silicas, Rare Earths Systems

- **#1 Consumer Chemicals**
 - Specialty Surfactants, Phosphorus Chemistry & Diphenols

- **#3 Vinyls & Acetow**
 - PVC, Cellulose Acetate Fiber
About SOLVAY – Process Analytical Technologies

Process Analysers in SOLVAY
- Competence Centers in R&D-Brussels (2p) & Lyon (4p) for PAT research, development & engineering
- Local expert teams on each production site working as a network
- >8000 analyser systems installed worldwide

Primary Objective is improving
- Reliability
- Response time
- Maintenance work
- Footprint
- Standardisation (worldwide scale)
Agenda

- About SOLVAY
- Past experience using Nessi modular systems in SOLVAY
- Installing Tunable Diode Lasers (TDL) on Nessi/ASTUTE modular systems in the PVC industry
- Installing Chlorine moisture sensors on full plastic Nessi/ASTUTE modular systems
- Future Perspectives & Conclusions
Past Experience with Nessi Modular Systems

How we are proceeding in SOLVAY

- Step 1: building up experience with sampling
 - revamping old sampling systems
 - Introducing new systems (new projects)
 - “getting the feel” for maintenance

- Step 2: introducing the (micro)analysers
 - starting with traditional small analysers
 - then going for modern micro-analysers (µGC, µSpectr.)

- Step 3: … then we can think about connectivity (Nessi-Bus)
Past Experience with Nessi Modular Systems

- Focussing on NESSI 3D
 The ASTUD Concept (EIF)

- Installation:
 - On fast loop or derivation
 - On the sampling take-off point, reduces or eliminates the sampling line

- Integrated cross-flow filtration possibilities
- Improving on response time
- Easier t° control
- Low product and drain volumes
Past Experience with Nessi Modular Systems

- In the PVC process (2008) – Liquid EDC analysers
 - Sampling for Water in EDC analyser (7 barg – 50°C)
 - Sampling for EDC purity analyser (5 barg – 55°C)
Past Experience with Nessi Modular Systems

- In the H2O2 process (2011) – Reactor Vent gas analysers
 - Pre-sampling for Oxygen analyser in Oxydation reactor (8 barg – 60°C) - 95% N₂, 1,5% H₂O, organic/water aerosols
Past Experience with Nessi Modular Systems

- **In the Chlor-Alkali process (2010) – Chlorine analyser**
 - Sampling for Trace Moisture in Chlorine analyser outlet compression (0-20 mg/Kg - 4 barg - 30°C)
 - Perfectly adapted to Chlorine with PFA/PVDF body, Plastic or Hastelloy C screws, Kalrez/Chemraz O-rings
Past Experience with Nessi Modular Systems

- Experience limited to sampling but Nessi lives up to our hopes and expectations

- High reliability of the ASTUTE systems, low maintenance required (preventive replacement of critical o-rings once a year).

- No corrosion issues encountered

- Very corrosive processes may be addressed by using plastic modular systems. No dangerous leak issues encountered.

- Price remains an important discouraging issue

Ready to integrate analysers on the ASTUTE....
Agenda

- About SOLVAY
- Past experience using Nessi modular systems in SOLVAY
- Installing Tunable Diode Lasers (TDL) on Nessi/ASTUTE modular systems in the PVC industry
- Installing Chlorine moisture sensors on full plastic Nessi/ASTUTE modular systems
- Future Perspectives & Conclusions
Installing TDL on ASTUTE systems – PVC industry

PVC monomer production

Process Chemistry:
- Producing 1,2-Ethylene DiChloride (EDC)
- Cracking 1,2-EDC to Vinyl Chloride (VCM)

Direct Chlorination

\[C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2 + \text{heat} \]

Oxychlorination

\[C_2H_4 + 2 \text{HCl} + 1/2 \text{O}_2 \rightarrow C_2H_4Cl_2 + \text{H}_2\text{O} + \text{heat} \]

Cracking of EDC

\[2C_2H_4Cl_2 \rightarrow 2C_2H_3Cl + 2\text{HCl} - \text{heat} \]

Diagram:
- Chlorine
- Ethylene
- Oxygen
- Water to WWT
- EDC
- HCl
- EDC Cracking
- VCM Purification
- EDC Purification
- Oxychlorination
- HT Direct Chlorination
Installing TDL on ASTUTE systems – PVC industry

- PVC monomer production

First observation of Nessi in SOLVAY plants (France):
Analyser #1 – Water in EDC
Analyser #2 – EDC purity

New TDL O2 Analysers installation (Belgium)
Installing TDL on ASTUTE systems – PVC industry

- **Traditional O₂ analyser on Oxychlorination reactor vent gas**

 - Principle: Paramagnetic
 - Goal: Security - Explosion prevention in OXY reactor
 (3 redundant analysers)
 - Process Conditions:
 - Pressure **6 Barg**; Temperature **40°C**
 - Composition 50% N₂, 30% CO₂, 5% CO, 5% C₂H₄, 4% EDC, <2% H₂O
 - [O₂] range: 0-5%vol (alarm @3%vol)
 - Enclosure: Analyser House
 - Other analysers on vent gas: CO, CO₂, C₂H₄ (Process control)
Installing TDL on ASTUTE systems – PVC industry

- Traditional O_2 analyser on Oxychlorination reactor vent gas

Sampling point

60 m $\varnothing 1/2''$ insulated sampling line

Analyser House
Installing TDL on ASTUTE systems – PVC industry

- Traditional O_2 analyser on Oxychlorination reactor vent gas

Common fast loop

Analyser loops

Sample conditioning

Analysers (O_2, CO, CO$_2$, C$_2$H$_4$)
Installing TDL on ASTUTE systems – PVC industry

Technical issues with traditional analysers

- Response time must be <30 sec (Process safety requirement)
 - Fast sample transport to analyser mandatory
 - Sample pressure must be near atmospheric (6 barg at sampling point) → Pressure reduction near sampling point mandatory!
 - Response time of paramagnetic analyser (+/-10 sec)

- Risk of Condensates
 - cold spots have to be avoided (fouling, flow disturbances)
 - gas toxicity
 - safety of analyser house must be respected (IEC61285)
 - sampled gas wasted to incinerator (not recycled).
 - to ensure fast response time, high flows/volumes are required (>2 m³/h) → Significant loss of EDC and C₂H₄
Installing TDL on ASTUTE systems – PVC industry

- Installing Tunable Diode Laser analysers

 - Advantages
 - Response time <3 sec
 - Very low maintenance (no moving parts)
 - High Specificity
 - Reliability (if well installed)
 - Stability (calibration 1/year)
 - Small footprint
 - Eex d version available
 - SIL rated

 - Disadvantages
 - limited to gas samples
 - Sensitive to process conditions (Pressure and t° compensation often mandatory, window protection with N₂ purge mandatory)
Installing TDL on ASTUTE systems – PVC industry

Installing a TDL On-Line with ASTUTE

Why?

- Retaining fast response time and all other advantages of TDL
- Limiting the flow (less waste to incinerator)
- Pressure control with Pressure regulators (adv. versus in-line config.)
- t° control (no condensation, no cold spots)
- Validation (zero and validation gases) (adv. versus in-line config.)
- No window purging necessary (adv. versus in-line config.)
- Independant of process, TDL may be dismounted and cleaned after process upsets (adv. versus in-line config.)
Installing TDL on ASTUTE systems – PVC industry

- Installing the O_2 TDL-ASTUTE on OXY vent gas
Installing TDL on ASTUTE systems – PVC industry

- Installing the O₂ TDL-ASTUTE on OXY vent gas
 - Total flow +/-350 l/h
 - Total Response time (T90) +/-12s
 - NEO Lasergas III TDL
 - No pressure compensation
Installing TDL on ASTUTE systems – PVC industry

- O_2 TDL-ASTUTE performances vs traditional analysers

Diagram showing TDL Analyser (Precision +/- 0.01% vol O2) vs Paramagnetic analysers (3x) (Precision +/- 0.05% vol O2). The graph illustrates the data from 22/05/2012 00:30:59 to 22/05/2012 02:32:38, with a 1h30' interval.
Installing TDL on ASTUTE systems – PVC industry

- O_2 TDL-ASTUTE performances vs traditional analysers

Response time improvement: +/- 25 seconds
Agenda

- About SOLVAY
- Past experience using Nessi modular systems in SOLVAY
- Installing Tunable Diode Lasers (TDL) on Nessi/ASTUTE modular systems in the PVC industry
- Installing Chlorine moisture sensors on full plastic Nessi/ASTUTE modular systems
- Future Perspectives & Conclusions
Installing H₂O sensor on Nessi systems – ChlorAlakali industry

- Chlorine Production (Cl₂ circuit after electrolysers)

First trials of Nessi on Chlorine in SOLVAY plants (Belgium): Moisture analyser
Installing H₂O sensor on Nessi systems – ChlorAlkali industry

Traditional trace moisture analyser in Cl₂ outlet compression

Traditional analysers:
- Principle: Electrolytic P₂O₅
- Goal: Corrosion prevention
- Process Conditions:
 Pressure 4 Barg; Temperature 30°C
- [H₂O] range: 0-20 mg H₂O / kg Cl₂
- Enclosure: Analyser Cabinet
- Sampling issues:
 - Strict control on sample pressure and flow to the sensor,
 - Adsorption/desorption of moisture in sample transport (tubing, filters, flowmeters) causing t° related memory effect,
 - gas toxicity,
 - corrosion.
Installing H₂O sensor on Nessi systems – ChlorAlakali industry

- Traditional trace moisture in Cl₂ analyser (P₂O₅ sensors)

Strong Corrosion Issues!!!
Memory effect in sampling line

Extern. Sampling
(Pressure control)

Intern. Sampling
(Flow control)

P₂O₅ Probe + holder
Installing H_2O sensor on Nessi systems – ChlorAlakali industry

- Installing a P_2O_5 sensor on-line with ASTUTE
 - ASTUTE body PVDF (EIF)
 - Parts PVDF/PFA (EM-Technik)
 - Cabinet insulated and heated @30°C
Installing H$_2$O sensor on Nessi systems – ChlorAlakali industry

- Installing a P$_2$O$_5$ sensor on-line with ASTUTE
Installing H₂O sensor on Nessi systems – ChlorAlakali industry

Installing a P₂O₅ sensor on-line with ASTUTE

- Objectives:
 - minimising adsorption/desorption effect by reducing sample transport line (length and volume).
 - tighter control on t° in smaller insulated cabinet
 - reducing size/footprint

- First results obtained in parallel with an existing analyser expected July 2012

- Direct installation on sampling point (Process flange) expected before December 2012
Agenda

- About SOLVAY
- Past experience using Nessi modular systems in SOLVAY
- Installing Tunable Diode Lasers (TDL) on Nessi/ASTUTE modular systems in the PVC industry
- Installing Chlorine moisture sensors on full plastic Nessi/ASTUTE modular systems
- Future Perspectives & Conclusions
Future Perspectives

- TDL-ASTUTE with combined emitter-receiver unit (folded optical path)

Mettler-Toledo (GPro 500)

Quartz Corner-cube reflector

Eex D head
Future Perspectives

- TDL-ASTUTE with combined emitter-receiver unit (folded optical path)

Adapting to ASTUTE
Future Perspectives

- TDL-ASTUTE with combined emitter-receiver unit (folded optical path)

Spectra Sensors
Future Perspectives

- List of Nessi applications in preparation in SOLVAY

 - \(\text{H}_2\text{O}_2 \) process
 - TDL-Astute for \(\text{O}_2 \) in all reactors
 - Polarographic \(\text{O}_2 \) sensors and Resistivity \(\text{H}_2 \) sensor for \(\mu \)-pilot units
 - PVDF process
 - \(\text{O}_2 \) in VDF monomer return to reactor using TDL-Astute
 - PVC process
 - \(\text{O}_2 \) in chlorination reactors
 - \(\text{HCl} \) in liquid VCM (monomer)
 - \(\text{C}_2\text{H}_2 \) in return \(\text{HCl} \) to oxychlorination reactor
 -
Future Perspectives

- **Polarographic O\textsubscript{2} sensors and Resistivity H\textsubscript{2} sensor for μ-pilot units**

 - H2Scan Hydrogen sensor
 - HY-OPTIMA 1700
 - range 0-10\%v

 - Mettler-Toledo Oxygen sensor
 - InPro6850i
 - range 0-100\%v
Future Perspectives

- Polarographic O_2 sensors and Resistivity H_2 sensor for μ-pilot units

Process Conditions:
- P 5-50 barg
- t° 20-50°C
- H_2 measurement in ESD

Sample in

P Reducer

Sensor O_2

Sample out

Sensor H_2

Back P Reducer

Cal. gas in
Future Perspectives

Future technical developments for ASTUTE

- UV-NIR photometry
 - development of flow cells and fiber optics adapted to Astute

- Photoacoustic Infrared absorption photometry
 - development of source-sensor adapted to Astute

- µ-GC
 - something fast, something ATEX (NEMS) ….

- MultiLaser TDL (Multicomponent analyser), QCL
 - O2, CO, CO2, C2H4 in (oxy)chlorination reactor

- Raman (optograph) …. And many more.
Conclusions

- Past experience has proven the high flexibility and reliability of the ASTUTE system as a process sampling device even when applied to a corrosive process.

- It is now available in plastic material (PFA/PVDF) for processes where stainless steel may not be the most suitable material.

- Its modularity and versatility have enabled us to bring sensors as closely as possible to the process in order to improve response time and measurement stability.

- We have Integrated a TDL analyser to the ASTUTE system, retaining all the advantages of this technology while limiting the loss in response time caused by the extractive configuration and avoiding difficult/expensive window purging.

- The path is wide open to adapt other technologies to the ASTUTE system
Thank you